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Abstract. In social robotics, a pivotal focus is enabling robots to engage
with humans in a more natural and seamless manner. The emergence of
advanced large language models (LLMs) has driven significant advance-
ments in integrating natural language understanding capabilities into
social robots. This paper presents a system for speech-guided sequen-
tial planning in pick and place tasks, which are found across a range
of application areas. The proposed system uses Large Language Model
Meta AI (Llama3) to interpret voice commands by extracting essential
details through parsing and decoding the commands into sequential ac-
tions. These actions are sent to DRL-VO, a learning-based control pol-
icy built on the Robot Operating System (ROS) that allows a robot to
autonomously navigate through social spaces with static infrastructure
and crowds of people. We demonstrate the effectiveness of the system
in simulation experiment using Turtlebot 2 in ROS1 and Turtlebot 3 in
ROS2. We conduct hardware trials using a Clearpath Robotics Jackal
UGYV, highlighting its potential for real-world deployment in scenarios
requiring flexible and interactive robotic behaviors.

Keywords: Human-Robot Interactions - Large Language Models - Mo-
tion Planning - Natural Language Processing.

1 Introduction

Social robotics aims to enable robots and humans to cohabitate in a natural and
intuitive manner. In the field of collaborative robotics, robots are required to
share workspaces with humans, making it essential for robots to understand and
execute human commands effectively [3]. Robots are increasingly being used in
retail, industrial settings, households, and office environments. In such settings,
robots are often asked to carry out tasks involving multiple steps or to complete
a series of tasks in a specific order. For instance, in a retail environment, a robot
might be required to navigate the store to pick up items from different aisles and
deliver them to a checkout counter. In an office, a robot might need to collect
documents from multiple departments and deliver them to a central location,
such as Human Resources. At home, robots could be tasked with household
chores that involve sequential actions such as serving food from the kitchen and
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then cleaning up after dinner. Such robotic tasks are often modeled as Vehicle
Routing Problems or other optimization challenges ||§| However, the complexity
of these problems increases in dynamic environments, with more assigned tasks,
and a growing number of robots. Robots are also increasingly deployed for these
tasks in hostile or hard-to-reach areas . Solving these issues is challenging
on its own, and incorporating natural language understanding for collaborative
robotics adds an additional layer of difficulty.

This paper aims to enable people to sequentially task robots using natural
language inputs. However, in experimental robotics, models are often designed
for specific tasks with rigid input formats to ensure successful task execution.
This rigidity ensures that robots can accomplish their assignments accurately but
does not account for the natural variability in human communication. Humans,
celebrating their individuality, interact with robots in diverse and natural ways,
often not conforming to predefined input formats. Therefore, for collaborative
robotics to be truly successful, robots must be able to interpret a variety of
human commands and translate them into actionable plans . To address this
need, we will build upon recent advancements in large language models, which
have shown great promise in enhancing natural language understanding.
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Fig. 1: Overview of the proposed system. The process begins with converting verbal
commands into text using the Google Cloud Speech API. The Llama3 model processes
this text to extract essential details, such as the pickup location, item, and deliv-
ery destination, using regex-based parsing. These parsed commands, along with prior
environmental information, are sent to the Task Execution module, where they are
translated into a sequence of actions that are then executed.

Our system, illustrated in Fig. [I consists of two main modules. The first
is the natural language understanding module, which processes user speech or
text input and outputs a set of task parameters. We utilize speech-to-text tech-
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nology to convert verbal commands into text. The text is fed into Llama3 |16],
an autoregressive large language model, which extracts essential details—such
as pickup location, item, and delivery destination—using regex-based parsing.
In other words, we are using Llama3 to “translate” free-form natural language
commands into a standardized, easily parsable form for robust task extraction.
Although alternatives like BERT |[7] could be trained on large datasets to han-
dle this process, they would likely eliminate the need for an LLM. Instead, we
prioritize Llama3’s ability to generalize and flexibly interpret commands, which
allows us to maintain a simpler, rule-based parsing mechanism while still bene-
fiting from the LLM’s advanced linguistic capabilities.

The second module translates the parsed commands into a sequence of ac-
tions by referencing a predefined dictionary of environment coordinates. This
dictionary stores coordinates of key landmarks, eliminating the need for seman-
tic planning and enabling faster execution. Task execution is managed using a
finite-state machine to control the flow of operations, along with off-the-shelf
robot navigation algorithms.

We demonstrate the efficacy of our system through simulated and hardware
experiments using three different robot models, two navigation algorithms, and
two environments. These experiments highlight the modularity of our system
and the potential for practical applications in real-world scenarios.

2 Related Work

In this section, we review the literature related to each of our two modules:
natural language understanding (NLU) and robotic navigation.

2.1 Natural Language Understanding

Recent advancements in large language models (LLMs) have significantly en-
hanced natural language understanding (NLU) capabilities across various do-
mains, including robotics [28]. Models like GPT-3 and BERT |7] have demon-
strated exceptional performance in comprehending and generating human-like
text, owing to their extensive training on large datasets. By fine-tuning these
models for specific tasks, researchers have achieved state-of-the-art results in
tasks spanning from text classification to question answering [28[29], thereby en-
hancing their performance on conventional NLU benchmarks [6,{10]. SayPlan 21|
focuses on scalable task planning using 3D scene graphs but does not integrate
speech-recognition or incorporate socially compliant algorithms such as DRL-
VO [27] for plan execution.

LLMs excel particularly in tasks requiring broad contextual understanding or
dealing with unstructured data 6], which is pertinent to collaborative and social
robotics applications. LLMs exhibit generalization capabilities, surpassing tra-
ditionally fine-tuned models in handling diverse and adversarial inputs |14}20].
In terms of practical applications, recent studies have showcased LLM effec-
tiveness across various NLU tasks, such as machine translation [2|, question
answering [25], and text classification [4].
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Contributions The novelty of our framework lies in its integration of
speech recognition and NLU capabilities, leveraging LLMs to enhance task clas-
sification accuracy. Our approach seamlessly integrates Google Speech Cloud
APT for speech-to-text transcription with Llama3 for task classification.

2.2 NLU-guided Social Autonomous Navigation

The vision of seamless integration of mobile robots into human environments
has been extensively studied. Robots like RHINO and MINERVA were deployed
in museums and solely focused on autonomous navigation amidst humans [13].
Various approach of navigation has treated people as dynamic, non-responsive
obstacles, and emphasized collision avoidance [26], while other approaches in-
tegrated human motion prediction with robot decision-making, acknowledging
mutual influences between actions of robots and people |[8].

Recent advancements in robotic navigation guided by natural language have
explored diverse methodologies to enhance human-robot interaction and adapt-
ability in dynamic environments. FollowNet [24]and LM-Nav [23] leverage end-
to-end neural architectures and large pre-trained models to interpret natural lan-
guage instructions and navigate complex environments, demonstrating success
in simulated and real-world scenarios. GOAT |[5] offers a multimodal navigation
system that integrates language descriptions and object recognition. However, it
lacks a comprehensive approach to dynamic social interactions in complex envi-
ronments. Arena 3.0 |12]| provides a realistic simulation environment for social
navigation but does not incorporate the advanced NLU features and real-time
feedback mechanisms that the proposed approach offers.

Contributions Our work advances beyond existing methodologies by com-
bining robust NLU capabilities with adaptive navigation strategies. Unlike pre-
vious approaches, which often rely on fixed control policies or simplistic com-
mand parsing techniques, our methodology leverages the capabilities of Llama3
for robust natural language understanding and DRL-VO [27] for adaptive and
socially-compliant navigation.

3 Problem Statement

The general task addressed in this work is to understand human commands using
Large Language Models (LLMs) and form a sequential plan for execution. The
overall problem can be subdivided into two problems:

Problem 1: NLU for Command Interpretation

This paper focuses on the scenario where a social robot receives instructions
to pick up an object from a specified location and deliver it to another desig-
nated place. This task exemplifies a common class of multi-step operations in
social robotics, where the robot must navigate through sequential actions such
as in household assistance for cleaning tasks, delivering medication in health
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care settings, etc. By addressing pickup and delivery planning, we aim to tackle
fundamental challenges that underpin various practical applications.

Let C denote the natural language command (in text or speech) provided
by the user, which includes information about pickup location Lpickup, delivery
location Lgelivery, and the pickup item I. The task of the robot is to design a
Natural Language Understanding (NLU) system that accurately parses C' into
a structured format:

Lpickupa delivcryv I= NLU(C)a

where NLU(C) process C' using Llama3 and parses the obtained information to
extract the task parameters Lyickup; Ldelivery, and 1.

Problem 2: Autonomous Navigation

We assume an environment whose layout of the static infrastructure is known
and we possess coordinates for key locations within it (e.g., room numbers).
The robot shares the environment with people who may move around during
the robot’s operation. The robot model used in this study is a differential wheel
drive robot, which is a representative model of various ground robots such as
TurtleBots, Jackal UGV, and Moxi by Diligent Robotics, though the proposed
system is applicable to any mobile robot.

Once the task parameters are identified by the NLU, we can look up the
coordinates of the pickup and delivery locations, Lpickup, Ldelivery, i the en-
vironment map. The next challenge is to navigate through the environment to
reach those locations. The robot does this using a control policy m with parame-
ters 0 that selects steering actions a; based on partial environmental observation
o+ (obtained from the sensors and perception system):

Ay ~ Wg(at|0t).

4 Methodology

In this section, we describe the methodology of the proposed Speech-Guided Se-
quential Planner for Autonomous Navigation. The proposed system integrates
speech recognition, natural language understanding, and an advanced control
technique to enable a robot to autonomously navigate in an environment pop-
ulated with human pedestrians. First, we address the natural language under-
standing aspect of Problem 1 in Section Followed by addressing the au-
tonomous navigation challenge posed by Problem 2 in Section [£.2]

4.1 Natural Language Understanding (NLU)

The first module takes in a natural language input (speech or text) and parses
it to extract the task information. This is done in two steps.
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Speech To Text Conversion To convert speech to text, we utilize the Google
Speech Recognition API |15] through the Python3 speech_recognition li-
brary for precise speech-to-text conversion. Initially, ambient noise levels are
calibrated using the microphone’s input during the first second without process-
ing speech, adjusting the recognizer’s sensitivity accordingly. Google’s advanced
speech recognition technology employs signal processing and machine learning
methods. It begins by preprocessing the audio input to extract spectral repre-
sentations and phonetic patterns. Deep neural networks then map these features
to textual sequences with high accuracy and efficiency.

Large Language Model (LLM) The natural language understanding (NLU)
process encompasses several key steps. Firstly, the received text undergoes pre-
processing, which includes tasks such as punctuation removal and text format-
ting to maintain consistency throughout the text. Following preprocessing, the
text is fed into the Llama3 API |16] provided by Groq |11] for context under-
standing and semantic parsingEI This step involves extracting structured data
essential for task execution. The extracted information is parsed using regular
expressions to identify the pickup location Lyickup, delivery location Lgelivery,
and the item to be picked up I. We utilize the LLM as a translation layer to
reformat complex, natural language commands into a standardized, structured
format that simplifies parsing. The integration of Llama3 enhances the system’s
capability to accurately interpret and process natural language commands, pro-
moting seamless interaction and task execution in robotic applications. Opting
for regex-based parsing over learned task classifiers ensures greater flexibility in
handling diverse human commands and reduces computational costs, making it
more practical for implementation in robots.

4.2 Sequential Task Assignment and Execution

Once the command is interpreted, we formulate and execute the task sequence.

Task Assignment For task assignment, our system employs a Finite State Ma-
chine (FSM) for handling simple tasks such as a single pickup and delivery. The
FSM consists of states like Idle, Navigating to Pickup, Picking Up Item, Nav-
igating to Delivery, and Delivering Item, with transitions triggered by events
such as reaching a location or completing an action. This approach is efficient
for straightforward tasks. However, for more complex tasks that involve multiple

! We employ the 8 billion parameter version (1lama3-8b-8192m) instead of the larger
counterparts, such as the 80 billion parameter model, due to larger models exhibiting
a tendency to assign specific room numbers when interpreting generic commands.
For instance, if asked to navigate to “TRAIL lab,” it might erroneously label it with
a hallucinated room number, like “Room 111.” Additionally, we can use the smaller
model onboard the robot rather than relying on remote API services, leading to
quicker response times and greater practicality for real-time applications.
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steps and dependencies, we can employ hierarchical task planners like GTPy-
hop or SHOP . These planners decompose high-level tasks into manage-
able sub-tasks, enabling the robot to handle complex scenarios, thus justifying
their integration into our system for enhanced task management and execution.

Autonomous Navigation We utilize two different navigation frameworks, de-
pending on the situation. In static worlds (i.e., without people), we use the
ROS2-Nav2 navigation stack. This is one of the most commonly used naviga-
tion frameworks in mobile robots. In environments full of people, we utilize the
DRL-VO (Deep Reinforcement Learning with Velocity Obstacles) [27] naviga-
tion system, which the authors previously designed to enable robots to navigate
through crowded and dynamic environments. The control policy is a convolu-
tional neural network that uses lidar scans, maps of pedestrian locations/speeds,
and goal coordinates to generates velocity commands for the robot. DRL-VO
yields higher speeds and few collisions than other robot controllers (including
the ROS navigation stack), especially in dense crowds.

5 Experiments

To evaluate the system, we first assess the speech-to-task classification by hav-
ing volunteers self-report the accuracy of the classification on 10 natural task
statements. We then evaluate the system integration with three distinct robotic
experiments: a simulation in an empty office environment using a Turtlebot3 in
ROS2, a simulation in a lobby with people using a Turtlebot2 in ROS1, and
a hardware implementation in a lobby with people using a Clearpath Robotics
Jackal UGV. The experimental setup is described in Fig. 2] These experiments
collectively demonstrate the system’s versatility and effectiveness across different
scenarios, from pedestrian-free areas to crowded social spaces.

Dames’ office
[ ]

Fig. 2: (Left) The layout of the Mechanical Engineering department at Temple Univer-
sity, used in the ROS2-Nav2 simulation with Turtlebot3. (Center) The layout of the
lobby of the College of Engineering at Temple University, which is used for both sim-
ulation experiments with Turtlebot2 using DRL-VO and hardware experiments with
the Jackal UGV. (Right) The Jackal UGV.
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5.1 Speech-to-Task Accuracy

To test the efficacy of the natural language understanding aspect of our system,
we asked 10 volunteers to speak 10 commands and report the number of cor-
rect classifications. Out of the 10 commands, 5 were provided to them and the
rest were the volunteer’s own command statements. This ensures that the ac-
curacy reported by the system is unbiased. Examples of the commands include
“Could you please bring the keys from security to TRAIL?” and “I forgot my
laptop, please bring a laptop from the computer station to the robotics lab.” We
observed an average accuracy of 84.37% for task classification. Feedback from
the volunteers revealed that using identifiers like “the” or “a” before the loca-
tion or pickup item confused the NLU system, suggesting a need for improved
preprocessing to handle such variations in command phrasing.

Dames’ office
=

UL LR LR Ll LT Y I AT

(a) Step 1: Localiz- (b) Step 2: Plan- (c¢) Step 3: Reach (d) Step 4: Plan- (e) Step 5: Reach
ing robot’s current ning path and Lpijckup and ex- ning path and Lgelivery and de-

location in the en- navigating to the ecuting action navigating to the liver I to com-
vironment (upper Lpickup (Mail for pickup I Lgelivery (Dames’ plete the sequen-
left room). Room). (envelopes). Office). tial tasks.

Fig. 3: Simulation experiment depicting the steps of progress for pickup of item I (en-
velopes) from Lpickup (Mail Room) and its delivery to Lgelivery (Dames’ Office).

5.2 System Integration Testing

We conducted three tests, outlined in Table [I] that vary the robot platform,
environment, and ROS version to demonstrate the flexibility of the system. The
table also provides links to full videos of all experiments, and Fig. [3] shows a
series of snapshots of the first experiment with the Turtlebot 3. The videos show
that in all cases the robot is able to complete the task given to it, either from a
natural language text input on a remote computer or a spoken command. The
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simulated and hardware tests in the lobby environment both have pedestrians,
demonstrating the system’s capability to navigate autonomously in social spaces
with static infrastructure and moving crowds, which is essential for getting robots
outside of controlled lab and factory environments.

Table 1: Overview of Experiments
Type ‘ Robot ‘ Navigation ‘Environment‘ Videos
https://youtu.be/L3kIAWS0ZKO|
https://youtu.be/HGLOE_DZUsk
https://youtu.be/TfleIxcCoE8
https://youtu.be/BaoLZ68bkAM
Hardware | Jackal DRL-VO Lobby  |https://youtu.be/hzYRvpX9Qe8

Simulation| Turtlebot3|ROS2-Nav2| ME Dept.

Simulation| Turtlebot2| DRL-VO Lobby

5.3 Discussion

Our experimental setup aimed to demonstrate the versatility and compatibility
of our system with different robotic platforms and environments. In a controlled,
pedestrian-free environment, we utilized the ROS2 Nav2 package with Turtle-
bot3, emphasizing the system’s capability to operate effectively with smaller
base robots and showcasing its integration with advanced ROS2 features. In
human-populated environments, where the risk of collision is higher, we used
the DRL-VO [27] algorithm on a Turtlebot2 and a Jackal. This highlights our
system’s adaptability to various robotic platforms, software stacks, and environ-
ments to be able to operate in a range of settings.

6 Conclusion

In this paper, we explore the feasibility and effectiveness of integrating advanced
natural language processing with robotic navigation systems to enable people to
use natural language to ask robots to complete multi-step tasks. We leverage
Llama3 to parse commands and different off-the-shelf navigation algorithms,
and we apply our system to a range of robot models, software stacks, and envi-
ronments. Our research enhances social and collaborative robotics by enabling
people to naturally interact with robots in shared spaces.

Future work will aim to enhance the versatility to more real-world scenarios.
We will update the robotic hardware by adding a gripper to the robot. This will
allow it to pick up and deliver objects as well as autonomously utilize elevators,
presenting an intriguing opportunity to expand their operational capabilities in
multi-story buildings and complex indoor environments. We will also update the
software with the goals of: 1) enhancing the success rate of our NLU module,
2) allowing the robot to respond to the user if it does not understand the given
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query [22], and 3) broadening the scope of tasks, which may include additional
steps to complete, by utilizing hierarchical task networks (HTNs) [19] or similar
planning paradigms.
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